small rewrites

This commit is contained in:
andis
2017-08-28 15:06:54 +02:00
parent 630b982502
commit 4f7d15ea3e
4 changed files with 48 additions and 107 deletions

View File

@@ -1,8 +1,43 @@
"""
This module holds the necessary functions to classify mail threads.
It predicts if a thread has been answered,the language and the topic.
"""
from classifier import print_answers
from classifier import get_pipe, test_pipe, get_training_threads
#from classifier import store_training_data
#in_training,
from training import train_single_thread
from storage import db_session, MailThread
from prediction import predict_threads
def predict_threads():
"""
Predicts the language, topic and if a thread is anwered and writes that to the database. This function doesn't have a return value.
"""
# Loading pipes for the prediction of each thread
pipe1,le=get_pipe("pipe1",key=b"answered",filter=["db"])
pipe2,le2=get_pipe("pipe2g", b"maintopic",["db"])
pipe3,le3=get_pipe("pipe2b", b"lang",["db"])
# Loading untrained MailThreads:
q=db_session.query(MailThread).filter(MailThread.istrained.op("IS NOT")(True))
mail_threads=q.all()
if len(mail_threads) ==0:
raise StandardError("no untrained threads found in database")
#Run the prediction for each property
answered=le.inverse_transform(pipe1.predict(mail_threads))
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
lang=le3.inverse_transform(pipe3.predict(mail_threads))
# Commit the results to the database
for i, t in enumerate(mail_threads):
t.answered, t.opened, t.maintopic, t.lang = ( bool(answered[i]),
bool(answered[i]),
str(maintopic[i]),
str(lang[i])
)
db_session.add(t)
db_session.commit()

View File

@@ -1,31 +1,2 @@
from classifier import get_pipe
from storage import db_session, MailThread
def predict_threads():
"""
Predicts the language, topic and if a thread is anwered and writes that to the database. This function doesn't have a return value.
"""
# Loading pipes for the prediction of each thread
pipe1,le=get_pipe("pipe1",key=b"answered",filter=["db"])
pipe2,le2=get_pipe("pipe2g", b"maintopic",["db"])
pipe3,le3=get_pipe("pipe2b", b"lang",["db"])
# Loading untrained MailThreads:
q=db_session.query(MailThread).filter(MailThread.istrained.op("IS NOT")(True))
mail_threads=q.all()
if len(mail_threads) ==0:
raise StandardError("no untrained threads found in database")
answered=le.inverse_transform(pipe1.predict(mail_threads))
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
lang=le3.inverse_transform(pipe3.predict(mail_threads))
for i, t in enumerate(mail_threads):
t.answered, t.opened, t.maintopic, t.lang = ( bool(answered[i]),
bool(answered[i]),
str(maintopic[i]),
str(lang[i])
)
db_session.add(t)
db_session.commit()

View File

@@ -5,7 +5,6 @@ from storage import Mail, MailThread, db_session
from classifier import print_answers
def train_fit_pipe():
tt= get_training_threads(b"answered")
pipe1.fit(tt[0],tt[1])
@@ -33,17 +32,20 @@ def predict_thread(mth,p,le,key):
def train_single_thread(tid,p,le,key="answered"):
if (not type(tid) is int): raise TypeError("ID must be of type int")
#-------------------------------------------------------
if not type(p) is Pipeline: raise TypeError("Second Argument needs to be type Pipeline")
if not type(le) is LabelEncoder: raise TypeError("Second Argument needs to be type LabelEncoder")
# Load a single Mailthread by firstmail id
mth=db_session.query(MailThread).filter(MailThread.firstmail==tid).first()
if mth is None: raise ValueError("Thread with firstmail %d not in Database" %tid)
if mth is None: raise StandardError("Thread with firstmail %d not in Database" %tid)
# Output the mail thread
print mth.firstmail
print mth.subject()
print mth.text()
if not p is None and not le is None:
answ=predict_thread(mth,p,le,key)
else: answ=None
if not le is None:
print_answers(le)
ca=raw_input("Correct answer..")

71
run.py
View File

@@ -15,7 +15,7 @@ from storage.fetch_mail import fetch_threads, flatten_threads
from storage import Mail, MailThread, db_session
#import yaml
#import email
from classifier import get_training_threads, print_answers, in_training, store_training_data, get_pipe, test_pipe, train_single_thread # , pipe2, pipe2b
from classifier import get_training_threads, print_answers,get_pipe, test_pipe, train_single_thread # , pipe2, pipe2b
from classifier import predict_threads
maintopic_values=["studium", "information","ausleihen","jobausschreibung", "umfragen"]
@@ -30,31 +30,8 @@ if len(sys.argv)>1:
if sys.argv[1] == "fetch_threads":
print flatten_threads(fetch_threads())
if sys.argv[1] == "predict_threads2":
predict_threads()
if sys.argv[1] == "predict_threads":
print "predicting threads"
pipe1,le=get_pipe("pipe1",b"answered",["db"])
pipe2,le2=get_pipe("pipe2g", b"maintopic",["db"])
pipe3,le3=get_pipe("pipe2b", b"lang",["db"])
q=db_session.query(MailThread).filter(MailThread.istrained.op("IS NOT")(True))
mail_threads=q.all()
if len(mail_threads) ==0:
raise ValueError("no untrained threads found")
answered=le.inverse_transform(pipe1.predict(mail_threads))
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
lang=le3.inverse_transform(pipe3.predict(mail_threads))
for i, t in enumerate(mail_threads):
t.answered=bool(answered[i])
t.opened=bool(answered[i])
t.maintopic=str(maintopic[i])
t.lang=str(lang[i])
db_session.add(t)
db_session.commit()
predict_threads()
if sys.argv[1]=="stats":
for topic in maintopic_values:
print topic
@@ -71,20 +48,6 @@ if len(sys.argv)>1:
app.run(port=3000,debug=True)
if sys.argv[1] == "trained_threads_from_yml":
from classifier.classifier import train
for k in train:
print k
t=db_session.query(MailThread).filter(MailThread.firstmail==k).first()
t.istrained=True
db_session.add(t)
db_session.commit()
if sys.argv[1] == "print_threads2":
mth=db_session.query(MailThread).all()
for t in mth:
print t.to_text()
print "---------------\n"
if sys.argv[1] == "train_thrd2":
p, le=get_pipe("pipe2", "maintopic",["db"])
pb, lb =get_pipe("pipe2b", "maintopic",["db"])
@@ -207,36 +170,6 @@ if len(sys.argv)>1:
db_session.commit()
if sys.argv[1] == "fetch_mail":
print "fetching mail %d " % int(sys.argv[2])
m=fetch_mail(int(sys.argv[2]))
hd=decode_header(m['ENVELOPE'].subject)
hd2=[]
# print hd
for h in hd:
if not h[1] is None:
hd2.append(h[0].decode(h[1]))
# print h[0].decode(h[1])
else:
hd2.append(h[0])
print "\nBetreff:"
for h in hd2:
print h
print "FROM:"
for t in m['ENVELOPE'].from_:
print t
print "TO:"
for t in m['ENVELOPE'].to:
print t
em=email.message_from_string(m['RFC822'])
for p in em.walk():
if p.get_content_maintype()=="text":
print p.get_payload()
elif p.get_content_maintype()=="multipart":
print p.get_payload()
else:
print p.get_content_maintype()
if sys.argv[1] == "initdb":