init learning cats
This commit is contained in:
106
classifier.py
Normal file
106
classifier.py
Normal file
@@ -0,0 +1,106 @@
|
||||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.feature_extraction import DictVectorizer
|
||||
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.pipeline import Pipeline, FeatureUnion
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
from storage import MailThread,db_session
|
||||
|
||||
with open("data.yml", 'r') as stream:
|
||||
try:
|
||||
train=yaml.load(stream)
|
||||
except yaml.YAMLError as exc:
|
||||
print(exc)
|
||||
|
||||
data_types= { "answered": bool, "maintopic": str}
|
||||
|
||||
def store_training_data(i, d,key=b"answered"):
|
||||
global train
|
||||
if not data_types.has_key(key):
|
||||
raise ValueError("Key "+str(key)+" unknown")
|
||||
if not train.has_key(i):
|
||||
train[i]={}
|
||||
if not key is None and type(train[i]) is dict:
|
||||
if not type(d) is data_types[key]:
|
||||
# print str(type(d)) + " vs " + str(data_types[key])
|
||||
raise TypeError("Data - %s - for key "% d +str(key)+" must be " +str(data_types[key])+ " but it is "+ str(type(d)))
|
||||
train[i][key]=d
|
||||
|
||||
|
||||
with open("data.yml","w") as file:
|
||||
file.write(yaml.dump(train,default_flow_style=True))
|
||||
file.close()
|
||||
|
||||
|
||||
# Lade Trainingsdaten fuer einen angegebenen key (Label/Eigenschaft)
|
||||
def get_training_threads(key="answered"):
|
||||
t_a=[]
|
||||
d_a=[]
|
||||
d_a2=[]
|
||||
for i in train:
|
||||
t=db_session.query(MailThread).filter(MailThread.firstmail==i).first()
|
||||
if not t is None: # Thread muss in der Datenbank sein
|
||||
if train[i].has_key(key): # In den Trainingsdaten muss der relevante Key sein
|
||||
t_a.append(t)
|
||||
d_a.append(train[i][key])
|
||||
le=LabelEncoder()
|
||||
d_a2=le.fit_transform(d_a)
|
||||
return (t_a,d_a2,le)
|
||||
|
||||
|
||||
def in_training(i, key="answered"):
|
||||
return train.has_key(i) and train[i].has_key(key)
|
||||
|
||||
|
||||
def print_answers(l):
|
||||
cc=l.classes_
|
||||
c_id=l.transform(cc)
|
||||
for i,c in enumerate(cc):
|
||||
print str(i) + ": " + str(c)
|
||||
return None
|
||||
|
||||
|
||||
class ThreadDictExtractor(BaseEstimator, TransformerMixin):
|
||||
def fit(self, x, y=None):
|
||||
return self
|
||||
def transform(self, X,y=None):
|
||||
return [t.mail_flat_dict() for t in X]
|
||||
|
||||
class ThreadSubjectExtractor(BaseEstimator, TransformerMixin):
|
||||
def fit(self, x, y=None):
|
||||
return self
|
||||
def transform(self, X,y=None):
|
||||
return [t.subject() for t in X]
|
||||
|
||||
class ThreadTextExtractor(BaseEstimator, TransformerMixin):
|
||||
def fit(self, x, y=None):
|
||||
return self
|
||||
def transform(self, X,y=None):
|
||||
return [t.text() for t in X]
|
||||
|
||||
|
||||
pipe1=Pipeline([('tde', ThreadDictExtractor()),('dv',DictVectorizer()),('clf', MultinomialNB())])
|
||||
|
||||
pipe2 = Pipeline([
|
||||
('union', FeatureUnion(transformer_list=[
|
||||
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
|
||||
('cv',CountVectorizer()),
|
||||
('tfidf', TfidfTransformer())
|
||||
])),
|
||||
('text', Pipeline([('tte',ThreadTextExtractor()),
|
||||
('cv',CountVectorizer()),
|
||||
('tfidf', TfidfTransformer())
|
||||
])),
|
||||
('envelope', Pipeline([('tde', ThreadDictExtractor()),
|
||||
('dv',DictVectorizer())
|
||||
]))
|
||||
], transformer_weights={
|
||||
'subject': 1,
|
||||
'text': 0.7,
|
||||
'envelope': 0.5
|
||||
} )),
|
||||
('clf', MultinomialNB())
|
||||
])
|
||||
Reference in New Issue
Block a user