init learning cats

This commit is contained in:
Andreas Stephanides
2017-08-04 07:49:39 +02:00
commit 941cbc3d45
14 changed files with 847 additions and 0 deletions

106
classifier.py Normal file
View File

@@ -0,0 +1,106 @@
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import yaml
from storage import MailThread,db_session
with open("data.yml", 'r') as stream:
try:
train=yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
data_types= { "answered": bool, "maintopic": str}
def store_training_data(i, d,key=b"answered"):
global train
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
if not train.has_key(i):
train[i]={}
if not key is None and type(train[i]) is dict:
if not type(d) is data_types[key]:
# print str(type(d)) + " vs " + str(data_types[key])
raise TypeError("Data - %s - for key "% d +str(key)+" must be " +str(data_types[key])+ " but it is "+ str(type(d)))
train[i][key]=d
with open("data.yml","w") as file:
file.write(yaml.dump(train,default_flow_style=True))
file.close()
# Lade Trainingsdaten fuer einen angegebenen key (Label/Eigenschaft)
def get_training_threads(key="answered"):
t_a=[]
d_a=[]
d_a2=[]
for i in train:
t=db_session.query(MailThread).filter(MailThread.firstmail==i).first()
if not t is None: # Thread muss in der Datenbank sein
if train[i].has_key(key): # In den Trainingsdaten muss der relevante Key sein
t_a.append(t)
d_a.append(train[i][key])
le=LabelEncoder()
d_a2=le.fit_transform(d_a)
return (t_a,d_a2,le)
def in_training(i, key="answered"):
return train.has_key(i) and train[i].has_key(key)
def print_answers(l):
cc=l.classes_
c_id=l.transform(cc)
for i,c in enumerate(cc):
print str(i) + ": " + str(c)
return None
class ThreadDictExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.mail_flat_dict() for t in X]
class ThreadSubjectExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.subject() for t in X]
class ThreadTextExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.text() for t in X]
pipe1=Pipeline([('tde', ThreadDictExtractor()),('dv',DictVectorizer()),('clf', MultinomialNB())])
pipe2 = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.5
} )),
('clf', MultinomialNB())
])