init learning cats

This commit is contained in:
Andreas Stephanides
2017-08-04 07:49:39 +02:00
commit 941cbc3d45
14 changed files with 847 additions and 0 deletions

238
run.py Normal file
View File

@@ -0,0 +1,238 @@
from __future__ import unicode_literals
import imapclient
from config import Config
import sys
from email.header import decode_header
import email
import codecs
import sys
import bs4
#sys.stdout = codecs.getwriter('utf8')(sys.stdout)
from storage.fetch_mail import fetch_mail
from storage.fetch_mail import fetch_threads, flatten_threads
from storage import Mail, MailThread, db_session
import yaml
import email
from classifier import get_training_threads, ThreadDictExtractor, pipe1, print_answers, in_training, store_training_data, pipe2
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import numpy
def train_fit_pipe():
tt= get_training_threads(b"answered")
print tt[1]
print tt[0]
pipe1.fit(tt[0],tt[1])
return pipe1,tt[2]
def train_fit_pipe2():
tt= get_training_threads(b"maintopic")
pipe2.fit(tt[0],tt[1])
return pipe2,tt[2]
def train_single_thread(tid,p,le,key="answered"):
if (not type(tid) is int): raise TypeError("ID must be of type int")
if not type(p) is Pipeline: raise TypeError("Second Argument needs to be type Pipeline")
if not type(le) is LabelEncoder: raise TypeError("Second Argument needs to be type LabelEncoder")
mth=db_session.query(MailThread).filter(MailThread.firstmail==tid).first()
if mth is None: raise ValueError("Thread with firstmail %d not in Database" %tid)
# Predict the value
pre=p.predict([mth])
answ=pre[0]
#
print mth.to_text()
print mth.text()
print "Status is answered is estimated to be: " + str(le.inverse_transform(pre)[0])
print_answers(le)
ca=raw_input("Correct answer..")
try:
ca=int(ca)
except ValueError:
print "String Data"
if type(ca)==int:
if ca == answ:
print ("Yes I got it right")
else:
print("Oh no...!")
l=le.inverse_transform([ca])[0]
if type(l) is numpy.bool_:
l=bool(l)
if type(l) is numpy.string_:
l=str(l)
store_training_data(tid,l, key)
elif not ca.strip() == "":
store_training_data(tid, ca, key)
else:
print "couldn't handle %s" % ca
#print "arg1:"+sys.argv[1]
if len(sys.argv)>1:
if sys.argv[1] == "fetch_threads":
print flatten_threads(fetch_threads())
if sys.argv[1] == "print_threads":
mth=db_session.query(MailThread).all()
for t in mth:
print t.firstmail
print t.mail_flat_dict()
if sys.argv[1] == "print_thrd":
if len(sys.argv)<3:
mth=db_session.query(MailThread).all()
for t in mth:
print t.firstmail
else:
t=db_session.query(MailThread).filter(MailThread.firstmail==sys.argv[2]).first()
print t.firstmail
print t.subject()
print t.text()
if sys.argv[1] == "print_threads2":
mth=db_session.query(MailThread).all()
for t in mth:
print t.to_text()
print "---------------\n"
if sys.argv[1] == "train_thrd2":
p, le=train_fit_pipe2()
train_single_thread(int(sys.argv[2]),p,le,b"maintopic")
if sys.argv[1] == "train_all2":
p, labelencoder=train_fit_pipe2()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail,"maintopic"):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
print t.text()
train_single_thread(t.firstmail, p, labelencoder, b"maintopic")
if sys.argv[1] == "testpipe2":
from classifier import ThreadSubjectExtractor, ThreadTextExtractor
pipe2,le=train_fit_pipe2()
if len(sys.argv)>2:
t=db_session.query(MailThread).filter(MailThread.firstmail==sys.argv[2]).first()
print t.to_text()
print le.inverse_transform(pipe2.predict([t]))
if sys.argv[1] == "train_thrd":
pipe1, labelencoder=train_fit_pipe()
train_single_thread(int(sys.argv[2]),pipe1,labelencoder)
if sys.argv[1] == "train_all":
pipe1, labelencoder=train_fit_pipe()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
train_single_thread(t.firstmail,pipe1,labelencoder)
if sys.argv[1] == "print_thread":
mth=db_session.query(MailThread).filter(MailThread.firstmail==int(sys.argv[2])).first()
print mth.mail_dicts()
print mth.mail_flat_dict()
if sys.argv[1] == "store_threads":
thrds=flatten_threads(fetch_threads())
for t in thrds:
if type(t[0]) is int:
th=db_session.query(MailThread).filter(MailThread.firstmail==t[0]).first()
if th == None:
th=MailThread()
th.firstmail=t[0]
if not th.body == yaml.dump(t):
th.body=yaml.dump(t)
th.islabeled=False
th.opened=True
else:
th.body=yaml.dump(t)
db_session.add(th)
db_session.commit()
print thrds
if sys.argv[1] == "print_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
mm.compile_envelope()
print mm.subject
print "----------"
print mm.text
if sys.argv[1] == "mail_dict_test":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_envelope()
print mm.dict_envelope()
if sys.argv[1] == "load_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
print mm.text
env=yaml.load(mm.envelope)
print env.subject
print env
if sys.argv[1] == "store_mail":
m=fetch_mail(int(sys.argv[2]))
mm=Mail()
mm.envelope=yaml.dump(m['ENVELOPE'])
mm.body=yaml.dump(m['RFC822'])
mm.id=m['id']
db_session.add(mm)
db_session.commit()
if sys.argv[1] == "fetch_mail":
print "fetching mail %d " % int(sys.argv[2])
m=fetch_mail(int(sys.argv[2]))
hd=decode_header(m['ENVELOPE'].subject)
hd2=[]
# print hd
for h in hd:
if not h[1] is None:
hd2.append(h[0].decode(h[1]))
# print h[0].decode(h[1])
else:
hd2.append(h[0])
print "\nBetreff:"
for h in hd2:
print h
print "FROM:"
for t in m['ENVELOPE'].from_:
print t
print "TO:"
for t in m['ENVELOPE'].to:
print t
em=email.message_from_string(m['RFC822'])
for p in em.walk():
if p.get_content_maintype()=="text":
print p.get_payload()
elif p.get_content_maintype()=="multipart":
print p.get_payload()
else:
print p.get_content_maintype()
if sys.argv[1] == "initdb":
from storage import init_db
init_db()