init learning cats

This commit is contained in:
Andreas Stephanides
2017-08-04 07:49:39 +02:00
commit 941cbc3d45
14 changed files with 847 additions and 0 deletions

106
classifier.py Normal file
View File

@@ -0,0 +1,106 @@
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import yaml
from storage import MailThread,db_session
with open("data.yml", 'r') as stream:
try:
train=yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
data_types= { "answered": bool, "maintopic": str}
def store_training_data(i, d,key=b"answered"):
global train
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
if not train.has_key(i):
train[i]={}
if not key is None and type(train[i]) is dict:
if not type(d) is data_types[key]:
# print str(type(d)) + " vs " + str(data_types[key])
raise TypeError("Data - %s - for key "% d +str(key)+" must be " +str(data_types[key])+ " but it is "+ str(type(d)))
train[i][key]=d
with open("data.yml","w") as file:
file.write(yaml.dump(train,default_flow_style=True))
file.close()
# Lade Trainingsdaten fuer einen angegebenen key (Label/Eigenschaft)
def get_training_threads(key="answered"):
t_a=[]
d_a=[]
d_a2=[]
for i in train:
t=db_session.query(MailThread).filter(MailThread.firstmail==i).first()
if not t is None: # Thread muss in der Datenbank sein
if train[i].has_key(key): # In den Trainingsdaten muss der relevante Key sein
t_a.append(t)
d_a.append(train[i][key])
le=LabelEncoder()
d_a2=le.fit_transform(d_a)
return (t_a,d_a2,le)
def in_training(i, key="answered"):
return train.has_key(i) and train[i].has_key(key)
def print_answers(l):
cc=l.classes_
c_id=l.transform(cc)
for i,c in enumerate(cc):
print str(i) + ": " + str(c)
return None
class ThreadDictExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.mail_flat_dict() for t in X]
class ThreadSubjectExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.subject() for t in X]
class ThreadTextExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.text() for t in X]
pipe1=Pipeline([('tde', ThreadDictExtractor()),('dv',DictVectorizer()),('clf', MultinomialNB())])
pipe2 = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.5
} )),
('clf', MultinomialNB())
])

25
classify_mail.py Normal file
View File

@@ -0,0 +1,25 @@
from sklearn.feature_extraction.text import TfidfTransformer,CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline, FeatureUnion
import sys
import yaml
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
text_clf = Pipeline([('vect', CountVectorizer()),('tfidf', TfidfTransformer()),('clf', MultinomialNB())])
text_ohc = Pipeline([('ohc', OneHotEncoder()),('clf', MultinomialNB())])
combined_features = FeatureUnion([('vect1', CountVectorizer()),('vect2', CountVectorizer())])
enc=OneHotEncoder()
with open("example_1.yaml", 'r') as stream:
try:
train=yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
tc=text_clf.fit(train["data"],train["target"])

42
classify_text.py Normal file
View File

@@ -0,0 +1,42 @@
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
text_clf = Pipeline([('vect', CountVectorizer()),('tfidf', TfidfTransformer()),('clf', MultinomialNB())])
import sys
import yaml
with open("example_1.yaml", 'r') as stream:
try:
train=yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
tc=text_clf.fit(train["data"],train["target"])
print(sys.argv[1])
answ=(tc.predict([sys.argv[1]]))[0]
print train["target_names"][answ]
for i in range(0, (len(train["target_names"]))):
print (str(i)+" "+ train["target_names"][i])
ca=int(raw_input("Correct answer.."))
if ca == answ:
print ("Yes I got it right")
else:
print("should I remember this?")
a=raw_input("shoudIrememberthis?")
if a == "y":
train["data"].append(sys.argv[1])
train["target"].append(ca)
print yaml.dump(train,default_flow_style=False)
file=open("example_1.yaml","w")
file.write(yaml.dump(train,default_flow_style=False))
file.close()
else:
print ("Ok, I already forgot")

13
install.sh Executable file
View File

@@ -0,0 +1,13 @@
#!/bin/bash
if test ! -d ".env"; then
echo "Erzeuge virtuelle Umgebung ...."
virtualenv .env
fi
echo "Aktiviere virtuelle Python Umgebung ..."
. .env/bin/activate
echo "Installiere requirements ..."
pip install --upgrade pip
pip install -r requirements.txt
if test ! -e "config.cfg" -a -e "config.cfg.sample"; then
cp config.cfg.sample config.cfg
fi

10
requirements.txt Normal file
View File

@@ -0,0 +1,10 @@
imapclient
email
config
sklearn
numpy
scipy
bs4
sqlalchemy
marshmallow
PyYAML

238
run.py Normal file
View File

@@ -0,0 +1,238 @@
from __future__ import unicode_literals
import imapclient
from config import Config
import sys
from email.header import decode_header
import email
import codecs
import sys
import bs4
#sys.stdout = codecs.getwriter('utf8')(sys.stdout)
from storage.fetch_mail import fetch_mail
from storage.fetch_mail import fetch_threads, flatten_threads
from storage import Mail, MailThread, db_session
import yaml
import email
from classifier import get_training_threads, ThreadDictExtractor, pipe1, print_answers, in_training, store_training_data, pipe2
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import numpy
def train_fit_pipe():
tt= get_training_threads(b"answered")
print tt[1]
print tt[0]
pipe1.fit(tt[0],tt[1])
return pipe1,tt[2]
def train_fit_pipe2():
tt= get_training_threads(b"maintopic")
pipe2.fit(tt[0],tt[1])
return pipe2,tt[2]
def train_single_thread(tid,p,le,key="answered"):
if (not type(tid) is int): raise TypeError("ID must be of type int")
if not type(p) is Pipeline: raise TypeError("Second Argument needs to be type Pipeline")
if not type(le) is LabelEncoder: raise TypeError("Second Argument needs to be type LabelEncoder")
mth=db_session.query(MailThread).filter(MailThread.firstmail==tid).first()
if mth is None: raise ValueError("Thread with firstmail %d not in Database" %tid)
# Predict the value
pre=p.predict([mth])
answ=pre[0]
#
print mth.to_text()
print mth.text()
print "Status is answered is estimated to be: " + str(le.inverse_transform(pre)[0])
print_answers(le)
ca=raw_input("Correct answer..")
try:
ca=int(ca)
except ValueError:
print "String Data"
if type(ca)==int:
if ca == answ:
print ("Yes I got it right")
else:
print("Oh no...!")
l=le.inverse_transform([ca])[0]
if type(l) is numpy.bool_:
l=bool(l)
if type(l) is numpy.string_:
l=str(l)
store_training_data(tid,l, key)
elif not ca.strip() == "":
store_training_data(tid, ca, key)
else:
print "couldn't handle %s" % ca
#print "arg1:"+sys.argv[1]
if len(sys.argv)>1:
if sys.argv[1] == "fetch_threads":
print flatten_threads(fetch_threads())
if sys.argv[1] == "print_threads":
mth=db_session.query(MailThread).all()
for t in mth:
print t.firstmail
print t.mail_flat_dict()
if sys.argv[1] == "print_thrd":
if len(sys.argv)<3:
mth=db_session.query(MailThread).all()
for t in mth:
print t.firstmail
else:
t=db_session.query(MailThread).filter(MailThread.firstmail==sys.argv[2]).first()
print t.firstmail
print t.subject()
print t.text()
if sys.argv[1] == "print_threads2":
mth=db_session.query(MailThread).all()
for t in mth:
print t.to_text()
print "---------------\n"
if sys.argv[1] == "train_thrd2":
p, le=train_fit_pipe2()
train_single_thread(int(sys.argv[2]),p,le,b"maintopic")
if sys.argv[1] == "train_all2":
p, labelencoder=train_fit_pipe2()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail,"maintopic"):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
print t.text()
train_single_thread(t.firstmail, p, labelencoder, b"maintopic")
if sys.argv[1] == "testpipe2":
from classifier import ThreadSubjectExtractor, ThreadTextExtractor
pipe2,le=train_fit_pipe2()
if len(sys.argv)>2:
t=db_session.query(MailThread).filter(MailThread.firstmail==sys.argv[2]).first()
print t.to_text()
print le.inverse_transform(pipe2.predict([t]))
if sys.argv[1] == "train_thrd":
pipe1, labelencoder=train_fit_pipe()
train_single_thread(int(sys.argv[2]),pipe1,labelencoder)
if sys.argv[1] == "train_all":
pipe1, labelencoder=train_fit_pipe()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
train_single_thread(t.firstmail,pipe1,labelencoder)
if sys.argv[1] == "print_thread":
mth=db_session.query(MailThread).filter(MailThread.firstmail==int(sys.argv[2])).first()
print mth.mail_dicts()
print mth.mail_flat_dict()
if sys.argv[1] == "store_threads":
thrds=flatten_threads(fetch_threads())
for t in thrds:
if type(t[0]) is int:
th=db_session.query(MailThread).filter(MailThread.firstmail==t[0]).first()
if th == None:
th=MailThread()
th.firstmail=t[0]
if not th.body == yaml.dump(t):
th.body=yaml.dump(t)
th.islabeled=False
th.opened=True
else:
th.body=yaml.dump(t)
db_session.add(th)
db_session.commit()
print thrds
if sys.argv[1] == "print_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
mm.compile_envelope()
print mm.subject
print "----------"
print mm.text
if sys.argv[1] == "mail_dict_test":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_envelope()
print mm.dict_envelope()
if sys.argv[1] == "load_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
print mm.text
env=yaml.load(mm.envelope)
print env.subject
print env
if sys.argv[1] == "store_mail":
m=fetch_mail(int(sys.argv[2]))
mm=Mail()
mm.envelope=yaml.dump(m['ENVELOPE'])
mm.body=yaml.dump(m['RFC822'])
mm.id=m['id']
db_session.add(mm)
db_session.commit()
if sys.argv[1] == "fetch_mail":
print "fetching mail %d " % int(sys.argv[2])
m=fetch_mail(int(sys.argv[2]))
hd=decode_header(m['ENVELOPE'].subject)
hd2=[]
# print hd
for h in hd:
if not h[1] is None:
hd2.append(h[0].decode(h[1]))
# print h[0].decode(h[1])
else:
hd2.append(h[0])
print "\nBetreff:"
for h in hd2:
print h
print "FROM:"
for t in m['ENVELOPE'].from_:
print t
print "TO:"
for t in m['ENVELOPE'].to:
print t
em=email.message_from_string(m['RFC822'])
for p in em.walk():
if p.get_content_maintype()=="text":
print p.get_payload()
elif p.get_content_maintype()=="multipart":
print p.get_payload()
else:
print p.get_content_maintype()
if sys.argv[1] == "initdb":
from storage import init_db
init_db()

3
storage/__init__.py Normal file
View File

@@ -0,0 +1,3 @@
from database import db_session, init_db
from mail_model import Mail
from thread_model import MailThread

23
storage/database.py Normal file
View File

@@ -0,0 +1,23 @@
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from config import Config
from database_mbase import MyBase
import os
f=file('config.cfg')
cfg=Config(f)
if cfg.get("db_main_type") == "mysql":
engine = create_engine("mysql+pymysql://%s:%s@localhost/crawler_articles?charset=utf8" % (cfg.get("db_main_user"), cfg.get("db_main_pw")))
else:
engine = create_engine('sqlite:///'+ os.path.join(cfg.db_path,cfg.db_mainfile), convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,# autoflush=False,
bind=engine))
Base=declarative_base(cls=MyBase)
def init_db():
import models
Base.metadata.create_all(bind=engine)

67
storage/database_mbase.py Normal file
View File

@@ -0,0 +1,67 @@
from sqlalchemy import Column, Integer, String, Boolean, DateTime, Text, ForeignKey, Index, TIMESTAMP
from datetime import datetime
class MyBase(object):
id = Column(Integer, primary_key=True)
created_at = Column(TIMESTAMP, default=datetime.utcnow, nullable=False)
updated_at = Column(TIMESTAMP, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
def __json__(self):
if self.__jsonattrs__ is None:
return self.__schema__().dump(self)[0]
else:
return self.__schema__(only=self.__jsonattrs__).dump(self)[0]
# def __init__(self, data={}):
# self.update(data,False)
def update(self,data, partial=True):
data, errors=self.__schema__( only=self.__whiteattrs__).load(data, partial=partial)
if len(errors)>0:
print errors
return (False,errors)
else:
for a in self.__whiteattrs__:
if data.has_key(a):
setattr(self,a,data[a])
return (True, [])
@classmethod
def deserialize(cls,data):
data, errors=cls.__schema__().load(data,partial=True)
a=cls()
for c in cls.__table__.columns:
if data.has_key(c.key):
setattr(a, c.key,data[c.key])
return a
class MyBase2(object):
id = Column(Integer, primary_key=True)
# created_at = Column(TIMESTAMP, default=datetime.utcnow, nullable=False)
# updated_at = Column(TIMESTAMP, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
def __json__(self):
if self.__jsonattrs__ is None:
return self.__schema__().dump(self)[0]
else:
return self.__schema__(only=self.__jsonattrs__).dump(self)[0]
# def __init__(self, data={}):
# self.update(data,False)
def update(self,data, partial=True):
data, errors=self.__schema__( only=self.__whiteattrs__).load(data, partial=partial)
if len(errors)>0:
print errors
return (False,errors)
else:
for a in self.__whiteattrs__:
if data.has_key(a):
setattr(self,a,data[a])
return (True, [])
@classmethod
def deserialize(cls,data):
data, errors=cls.__schema__().load(data,partial=True)
a=cls()
for c in cls.__table__.columns:
if data.has_key(c.key):
setattr(a, c.key,data[c.key])
return a

37
storage/fetch_mail.py Normal file
View File

@@ -0,0 +1,37 @@
import imapclient
from datetime import date
from config import Config
f=file('config.cfg')
cfg=Config(f)
server = imapclient.IMAPClient(cfg.host, use_uid=True, ssl=True)
server.login(cfg.user, cfg.password)
server.select_folder('INBOX')
def fetch_mail(myid):
m=server.fetch([myid],['ENVELOPE','RFC822'])
m=m[myid]
m["id"]=myid
return m
def fetch_thread(tp):
return tp
def fetch_threads():
src=server.thread(criteria=[b'SUBJECT', b'service', b'SINCE', date(2017,07,01)])
#, b'BEFORE', date(2017,08,01)
return src
def flatten_threads(thrds, array=[], level=0):
if level > 0:
for t in thrds:
if type(t) is tuple:
array = array + (flatten_threads(t,[],1))
else:
array.append(t)
else:
for t in thrds:
array.append(flatten_threads(t,[],1))
return array

126
storage/mail_model.py Normal file
View File

@@ -0,0 +1,126 @@
from sqlalchemy import Column, Integer, String, Boolean, DateTime, Text, ForeignKey, Unicode
from sqlalchemy.orm import relationship
from datetime import datetime
from database import Base
from database import db_session
from email.header import decode_header
from marshmallow import Schema, fields, post_load
import yaml
import email
from fetch_mail import fetch_mail
import bs4
class FullMailSchema(Schema):
id=fields.Integer()
text=fields.String()
body=fields.String()
envelope=fields.String()
class Mail(Base):
__tablename__ = 'mails'
id = Column(Integer, primary_key=True)
date = Column(DateTime)
envelope = Column(Text)
body = Column(Text)
text = Column(Text)
from_ = Column(Text)
from_mailbox=Column(String)
from_host=Column(String)
to_ = Column(Text)
to_mailbox = Column(Text)
to_host=Column(String)
subject = Column(Text)
__schema__=FullMailSchema
__jsonid__='mail'
__whiteattrs__= ["text", "envelope"]
__jsonattrs__=None
@classmethod
def fetch_mail(self,mid):
m=fetch_mail(mid)
mm=Mail()
mm.envelope=yaml.dump(m['ENVELOPE'])
em=email.message_from_string(m['RFC822'])
if type(em.get_payload()) is list:
pt=[]
for p in em.walk():
if p.get_content_maintype() == "text":
pt.append(p)
em.set_payload(pt)
mm.body=yaml.dump(str(em))
mm.id=m['id']
db_session.add(mm)
db_session.commit()
return mm
def get_email(self):
em=email.message_from_string(yaml.load(self.body))
return em
def compile_envelope(self):
env=yaml.load(self.envelope)
hd=decode_header(env.subject)
hd2=[]
for h in hd:
if not h[1] is None:
hd2.append(h[0].decode(h[1]))
# print h[0].decode(h[1])
else:
hd2.append(h[0])
self.subject=yaml.dump(hd2)
to_array=[]
from_array=[]
# print "Status"
# print env
if env.to is None:
print self.id
else:
for t in env.to:
a={"host": t.host, "mail": t.mailbox}
to_array.append(a)
self.to_=yaml.dump(to_array)
for t in env.from_:
a={"host": t.host, "mail": t.mailbox}
from_array.append(a)
self.to_=yaml.dump(to_array)
self.from_=yaml.dump(from_array)
return None
def dict_envelope(self):
d={}
i=0
for p in yaml.load(self.subject):
if p is not None:
d["subject_"+str(i)]=p
i=i+1
i=0
for p in yaml.load(self.to_):
if p["host"] is not None:
d["to_host_"+str(i)]=p["host"]
if p["mail"] is not None:
d["to_mailbox_"+str(i)]=p["mail"]
i=i+1
i=0
for p in yaml.load(self.from_):
if p["host"] is not None:
d["from_host_"+str(i)]=p["host"]
if p["mail"] is not None:
d["from_mailbox_"+str(i)]=p["mail"]
i=i+1
return d
def compile_text(self):
for p in self.get_email().walk():
if p.get_content_maintype()=="text":
pl=p.get_payload(decode=True)
# print pl
# print p.get_content_type()
if p.get_content_subtype()=="html":
b4=bs4.BeautifulSoup(pl,"html.parser")
self.text= yaml.dump(b4.get_text())
else:
self.text =yaml.dump( pl)

2
storage/models.py Normal file
View File

@@ -0,0 +1,2 @@
from mail_model import Mail
from thread_model import MailThread

93
storage/thread_model.py Normal file
View File

@@ -0,0 +1,93 @@
from sqlalchemy import Column, Integer, String, Boolean, DateTime, Text, ForeignKey, Unicode
from sqlalchemy.orm import relationship
from datetime import datetime
from database import Base
from database import db_session
from email.header import decode_header
from marshmallow import Schema, fields, post_load
import yaml
import email
from mail_model import Mail
#from fetch_mail import fetch_mail
class FullThreadSchema(Schema):
id=fields.Integer()
text=fields.String()
body=fields.String()
envelope=fields.String()
class MailThread(Base):
__tablename__ = 'threads'
id = Column(Integer, primary_key=True)
firstmail = Column(Integer)
islabeled = Column(Boolean)
opened = Column(Boolean)
body = Column(Text)
__schema__=FullThreadSchema
__jsonid__='thread'
__whiteattrs__= ["body"]
__jsonattrs__=None
def bdy(self):
return yaml.load(self.body)
def to_text(self):
mmm=self.mails()
txt=""
for m in mmm:
m.compile_envelope()
txt=txt+"mail: \n"
for f in yaml.load(m.from_):
txt=txt+f["mail"]+"@"+f["host"]
txt=txt+" --- "
txt=txt+" ".join(yaml.load(m.subject))
txt=txt+"\n"
return txt
def mails(self):
a=[]
# print self.bdy()
for m in self.bdy():
mail=db_session.query(Mail).filter(Mail.id==int(m)).first()
if mail is None:
mail=Mail.fetch_mail(int(m))
a.append(mail)
return a
def mail_dicts(self):
a=[]
# print "maildicts: "+ str(self.mails())
for m in self.mails():
m.compile_envelope()
a.append(m.dict_envelope())
return a
def mail_flat_dict(self):
a=[]
d={}
dc=self.mail_dicts()
# print dc
for i in range(0,len(dc)):
for k, v in dc[i].iteritems():
d["mail_"+str(i)+"_"+k]=v
return d
def subject(self):
a=""
for m in self.mails():
m.compile_envelope()
a=a + " ".join(yaml.load(m.subject))+"\n"
return a
def text(self):
a=u""
for m in self.mails():
m.compile_text()
t=yaml.load(m.text)
if type(t) is unicode:
txt=t
else:
# print "withintm:"+str(type(t))
t=t.decode("ISO-8859-1")
txt=t
a=a+txt+"\n\n"
return a

62
test_imap.py Normal file
View File

@@ -0,0 +1,62 @@
#!.env/bin/python
from __future__ import unicode_literals
from imapclient import IMAPClient
from datetime import date
import yaml
HOST="buran.htu.tuwien.ac.at"
USERNAME="andis"
PASSWORD="t4MJAvU2"
ssl=True
server=IMAPClient(HOST, use_uid=True, ssl=ssl)
server.login(USERNAME,PASSWORD)
select_info=server.select_folder('INBOX')
messages=server.search([u'SUBJECT', 'service',u'SINCE', date(2017,06,1)])
#pritn(select_info)
#response = server.fetch(messages, ['FLAGS', 'RFC822.SIZE', 'BODY', 'ENVELOPE','X-GM-THRID', 'X-GM-MSGID'])
#response = server.fetch(messages, ['ENVELOPE'])
#print(response)
#for msgid, data in response.iteritems():
# print(' ID %d: %d bytes, flags=%s, %s' % (msgid,
# data[b'RFC822.SIZE'],
# data[b'FLAGS'], data['ENVELOPE']))
#response = server.thread()
print "\n\n --------------------------------\n"
response= server.thread(criteria=[u'SUBJECT', 'service',u'SINCE', date(2017,04,1)])
print(response)
#resp=server.thread('X-GM')
#for msgid, data in response.iteritems():
# print(' ID %d: \t %s \t %s' % (msgid, data[b'X-GM-THRID'], data[b'X-GM-MSGID']))
print "\n---------------------\n"
print response[0], len(response[0])
def get_msg(mid):
print mid
sf=server.fetch([mid],['ENVELOPE'])
for msgid, data in sf.iteritems():
return {"msgid": msgid, "envelope": data[b'ENVELOPE']}
def get_msg_tuple(ids):
r=[]
for i in ids:
if type(i) is int:
r.append(get_msg(i))
elif type(i) is tuple:
r.append(get_msg_tuple(i))
return r
r=[]
for ids in response:
r.append(get_msg_tuple(ids))
print yaml.dump(r,default_flow_style=False)
file=open("envelopes.yaml","w")
file.write(yaml.dump(r,default_flow_style=False))
file.close()