rewrite classifier

This commit is contained in:
Andreas Stephanides
2017-08-07 10:20:28 +02:00
parent ff0bdc6d3b
commit 94d8d26187
11 changed files with 411 additions and 98 deletions

4
classifier/__init__.py Normal file
View File

@@ -0,0 +1,4 @@
from classifier import in_training, print_answers
from classifier import get_pipe, test_pipe, get_training_threads
from training import train_single_thread
from classifier import store_training_data

191
classifier/classifier.py Normal file
View File

@@ -0,0 +1,191 @@
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.naive_bayes import MultinomialNB
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
import numpy as np
import yaml
from storage import MailThread,db_session
from sklearn.metrics import accuracy_score
with open("data.yml", 'r') as stream:
try:
train=yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
data_types= { "answered": bool, "maintopic": str, "lang": str}
def set_train_data(i,d,key=b"answered"):
global train
#------------------------------------
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
if not train.has_key(i) or train[i] is None:
train[i]={}
if not type(d) is data_types[key]:
raise TypeError("Data - %s - for key "% d +str(key)+" must be " +str(data_types[key])+ " but it is "+ str(type(d)))
#------------------------------------
train[i][key]=d
def store_training_data(i, d,key=b"answered"):
set_train_data(i,d,key)
with open("data.yml","w") as file:
file.write(yaml.dump(train,default_flow_style=True))
file.close()
# Lade Trainingsdaten fuer einen angegebenen key (Label/Eigenschaft)
def get_training_threads(key="answered", filter=[]):
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
#------------------------------------
t_a=[]
d_a=[]
d_a2=[]
#------------------------------------
for i in train:
if train[i].has_key(key): # In den Trainingsdaten muss der relevante Key sein
t=db_session.query(MailThread).filter(MailThread.firstmail==i).first()
if not t is None: # Thread muss in der Datenbank sein
t_a.append(t)
d_a.append(train[i][key])
le=LabelEncoder()
d_a2=le.fit_transform(d_a)
return (t_a,d_a2,le)
def in_training(i, key="answered"):
return train.has_key(i) and train[i].has_key(key)
def print_answers(l):
cc=l.classes_
c_id=l.transform(cc)
for i,c in enumerate(cc):
print str(i) + ": " + str(c)
return None
class ThreadDictExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.mail_flat_dict() for t in X]
class ThreadSubjectExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.subject() for t in X]
class ThreadTextExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.text() for t in X]
def get_pipe(p=b"pipe1",k=b"answered"):
p=build_pipe(p)
tt= get_training_threads(k)
if len(tt[0]) > 0:
p.fit(tt[0],tt[1])
return p,tt[2]
else:
return None, None
def test_pipe(pp,k):
tt= get_training_threads(k)
X_train,X_test,y_train,y_test=train_test_split(tt[0],tt[1],test_size=0.2)
if type(pp) is list:
for p in pp:
print "pipe: %s" % p
p=build_pipe(p)
p.fit(X_train,y_train)
ypred=p.predict(X_test)
print accuracy_score(y_test,ypred)
def build_pipe(p=b"pipe1"):
if p == "pipe1":
p=Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer()),
('clf', MultinomialNB())
])
elif p=="pipe2":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.7
} )),
('clf', MultinomialNB())
])
elif p=="pipe2b":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.7
} )),
('mlc', MLPClassifier())
])
elif p=="pipe2c":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 1,
'envelope': 0.4
} )),
('mlc', MLPClassifier())
])
else:
raise ValueError("The pipe %s is not a valid pipe")
return p

View File

@@ -0,0 +1,25 @@
from sklearn.feature_extraction.text import TfidfTransformer,CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline, FeatureUnion
import sys
import yaml
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
text_clf = Pipeline([('vect', CountVectorizer()),('tfidf', TfidfTransformer()),('clf', MultinomialNB())])
text_ohc = Pipeline([('ohc', OneHotEncoder()),('clf', MultinomialNB())])
combined_features = FeatureUnion([('vect1', CountVectorizer()),('vect2', CountVectorizer())])
enc=OneHotEncoder()
with open("example_1.yaml", 'r') as stream:
try:
train=yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
tc=text_clf.fit(train["data"],train["target"])

View File

@@ -0,0 +1,42 @@
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
text_clf = Pipeline([('vect', CountVectorizer()),('tfidf', TfidfTransformer()),('clf', MultinomialNB())])
import sys
import yaml
with open("example_1.yaml", 'r') as stream:
try:
train=yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
tc=text_clf.fit(train["data"],train["target"])
print(sys.argv[1])
answ=(tc.predict([sys.argv[1]]))[0]
print train["target_names"][answ]
for i in range(0, (len(train["target_names"]))):
print (str(i)+" "+ train["target_names"][i])
ca=int(raw_input("Correct answer.."))
if ca == answ:
print ("Yes I got it right")
else:
print("should I remember this?")
a=raw_input("shoudIrememberthis?")
if a == "y":
train["data"].append(sys.argv[1])
train["target"].append(ca)
print yaml.dump(train,default_flow_style=False)
file=open("example_1.yaml","w")
file.write(yaml.dump(train,default_flow_style=False))
file.close()
else:
print ("Ok, I already forgot")

70
classifier/training.py Normal file
View File

@@ -0,0 +1,70 @@
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import numpy
from storage import Mail, MailThread, db_session
from classifier import store_training_data, print_answers
def train_fit_pipe():
tt= get_training_threads(b"answered")
pipe1.fit(tt[0],tt[1])
return pipe1,tt[2]
def train_fit_pipe2():
tt= get_training_threads(b"maintopic")
pipe2.fit(tt[0],tt[1])
return pipe2,tt[2]
def train_fit_pipe2b():
tt= get_training_threads(b"maintopic")
pipe2b.fit(tt[0],tt[1])
return pipe2b,tt[2]
def predict_thread(mth,p,le,key):
#-------------------------------------------------------
if not type(p) is Pipeline: raise TypeError("Second Argument needs to be type Pipeline")
if not type(le) is LabelEncoder: raise TypeError("Second Argument needs to be type LabelEncoder")
#-------------------------------------------------------
pre=p.predict([mth])
answ=pre[0]
print "Status is answered is estimated to be: " + str(le.inverse_transform(pre)[0])
return answ
def train_single_thread(tid,p,le,key="answered"):
if (not type(tid) is int): raise TypeError("ID must be of type int")
mth=db_session.query(MailThread).filter(MailThread.firstmail==tid).first()
if mth is None: raise ValueError("Thread with firstmail %d not in Database" %tid)
print mth.firstmail
print mth.subject()
print mth.text()
if not p is None and not le is None:
answ=predict_thread(mth,p,le,key)
else: answ=None
if not le is None:
print_answers(le)
ca=raw_input("Correct answer..")
try:
ca=int(ca)
except ValueError:
print "String Data"
if type(ca)==int:
if ca == answ:
print ("Yes I got it right")
else:
print("Oh no...!")
l=le.inverse_transform([ca])[0]
if type(l) is numpy.bool_:
l=bool(l)
if type(l) is numpy.string_:
l=str(l)
store_training_data(tid,l, key)
elif not ca.strip() == "":
store_training_data(tid, ca, key)
else:
print "couldn't handle %s" % ca

View File

@@ -1,31 +1,32 @@
{26808: {maintopic: jobausschreibung}, 27017: {maintopic: jobausschreibung}, 27070: {
maintopic: ausleihen}, 27083: {maintopic: ausleihen}, 27086: {maintopic: information},
27094: {maintopic: information}, 27096: {maintopic: jobausschreibung}, 27102: {
maintopic: studium}, 27118: {maintopic: information}, 27127: {maintopic: studium},
27130: {maintopic: information}, 27133: {maintopic: information}, 27141: {maintopic: information},
27146: {maintopic: information}, 27166: {maintopic: umfragen}, 27171: {maintopic: ausleihen},
27178: {maintopic: studium}, 27182: {maintopic: studium}, 27197: {maintopic: information},
27201: {maintopic: information}, 27218: {maintopic: information}, 27219: {maintopic: studium},
27222: {maintopic: information}, 27226: {maintopic: ausleihen}, 27420: {answered: true,
maintopic: studium}, 27422: {answered: true, maintopic: studium}, 27425: {answered: false,
maintopic: studium}, 27431: {answered: false, maintopic: information}, 27434: {
answered: false, maintopic: information}, 27435: {answered: false}, 27438: {answered: false,
maintopic: information}, 27439: {answered: true, maintopic: studium}, 27441: {
answered: false, maintopic: studium}, 27444: {answered: true, maintopic: ausleihen},
{26808: {maintopic: jobausschreibung}, 27008: {lang: de}, 27017: {lang: de, maintopic: jobausschreibung},
27061: {lang: de}, 27070: {maintopic: ausleihen}, 27083: {maintopic: ausleihen},
27086: {maintopic: information}, 27094: {maintopic: information}, 27096: {maintopic: jobausschreibung},
27102: {lang: en, maintopic: studium}, 27118: {maintopic: information}, 27127: {
maintopic: studium}, 27130: {maintopic: information}, 27133: {maintopic: information},
27141: {maintopic: information}, 27146: {maintopic: information}, 27166: {maintopic: umfragen},
27171: {maintopic: ausleihen}, 27178: {maintopic: studium}, 27182: {maintopic: studium},
27197: {maintopic: information}, 27201: {maintopic: information}, 27218: {maintopic: information},
27219: {maintopic: studium}, 27222: {maintopic: information}, 27226: {maintopic: ausleihen},
27420: {answered: true, maintopic: studium}, 27422: {answered: true, maintopic: studium},
27425: {answered: false, maintopic: studium}, 27431: {answered: false, maintopic: information},
27434: {answered: false, lang: de, maintopic: information}, 27435: {answered: false},
27438: {answered: false, maintopic: information}, 27439: {answered: true, maintopic: studium},
27441: {answered: false, maintopic: studium}, 27444: {answered: true, maintopic: ausleihen},
27454: {answered: false, maintopic: information}, 27455: {answered: false, maintopic: information},
27456: {answered: false, maintopic: studium}, 27457: {answered: false, maintopic: jobausschreibung},
27468: {answered: true, maintopic: studium}, 27489: {answered: false, maintopic: information},
27490: {answered: false, maintopic: fachschaftenzeugs}, 27491: {answered: false,
maintopic: jobausschreibung}, 27492: {answered: false, maintopic: information},
27495: {answered: false, maintopic: information}, 27496: {answered: true, maintopic: ausleihen},
27497: {answered: false, maintopic: information}, 27500: {answered: true, maintopic: studium},
27501: {answered: false, maintopic: information}, 27514: {answered: true, maintopic: studium},
27515: {answered: true, maintopic: studium}, 27518: {answered: true, maintopic: studium},
27456: {answered: false, lang: de, maintopic: studium}, 27457: {answered: false,
maintopic: jobausschreibung}, 27468: {answered: true, maintopic: studium}, 27489: {
answered: false, lang: en, maintopic: information}, 27490: {answered: false, maintopic: fachschaftenzeugs},
27491: {answered: false, maintopic: jobausschreibung}, 27492: {answered: false,
maintopic: information}, 27495: {answered: false, maintopic: information}, 27496: {
answered: true, maintopic: ausleihen}, 27497: {answered: false, maintopic: information},
27500: {answered: true, lang: en, maintopic: studium}, 27501: {answered: false,
lang: en, maintopic: information}, 27514: {answered: true, maintopic: studium},
27515: {answered: true, lang: en, maintopic: studium}, 27518: {answered: true, maintopic: studium},
27523: {answered: false, maintopic: jobausschreibung}, 27526: {answered: false,
maintopic: studium}, 27536: {answered: true, maintopic: studium}, 27541: {answered: true,
maintopic: studium}, 27542: {answered: false, maintopic: studium}, 27543: {answered: false,
maintopic: information}, 27544: {answered: true, maintopic: studium}, 27545: {
answered: false, maintopic: umfragen}, 27546: {answered: false, maintopic: information},
maintopic: studium}, 27536: {answered: true, lang: de, maintopic: studium}, 27541: {
answered: true, maintopic: studium}, 27542: {answered: false, maintopic: studium},
27543: {answered: false, maintopic: information}, 27544: {answered: true, maintopic: studium},
27545: {answered: false, maintopic: umfragen}, 27546: {answered: false, maintopic: information},
27547: {answered: false, maintopic: studium}, 27549: {answered: false}, 27550: {
answered: false, maintopic: information}, 27553: {answered: false, maintopic: information},
27558: {answered: false}, 27560: {answered: false, maintopic: ausleihen}, 27562: {

View File

@@ -22,11 +22,16 @@ from classifier import get_pipe
mail_threads=db_session.query(MailThread).all()
pipe1,le=get_pipe("pipe1",b"answered")
pipe2,le2=get_pipe("pipe2b", b"maintopic")
pipe3,le3=get_pipe("pipe2b", b"lang")
answered=le.inverse_transform(pipe1.predict(mail_threads))
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
lang=le3.inverse_transform(pipe3.predict(mail_threads))
for i, t in enumerate(mail_threads):
t.answered=answered[i]
t.maintopic=maintopic[i]
t.lang=lang[i]
@app.route("/")
def hello():
mth=mail_threads

88
run.py
View File

@@ -1,87 +1,30 @@
from __future__ import unicode_literals
import imapclient
#import imapclient
from config import Config
import sys
from email.header import decode_header
import email
#from email.header import decode_header
#import email
import codecs
import sys
import bs4
#import sys
#import bs4
#sys.stdout = codecs.getwriter('utf8')(sys.stdout)
from storage.fetch_mail import fetch_mail
from storage.fetch_mail import fetch_threads, flatten_threads
from storage import Mail, MailThread, db_session
import yaml
import email
from classifier import get_training_threads, ThreadDictExtractor, print_answers, in_training, store_training_data, get_pipe, test_pipe # , pipe2, pipe2b
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import numpy
#import yaml
#import email
from classifier import get_training_threads, print_answers, in_training, store_training_data, get_pipe, test_pipe, train_single_thread # , pipe2, pipe2b
from flaskapp import app
def train_fit_pipe():
tt= get_training_threads(b"answered")
# print tt[1]
# print tt[0]
pipe1.fit(tt[0],tt[1])
return pipe1,tt[2]
def train_fit_pipe2():
tt= get_training_threads(b"maintopic")
pipe2.fit(tt[0],tt[1])
return pipe2,tt[2]
def train_fit_pipe2b():
tt= get_training_threads(b"maintopic")
pipe2b.fit(tt[0],tt[1])
return pipe2b,tt[2]
def predict_thread(p,l,t):
pre=p.predict([t])
print "Status is answered is estimated to be: " + str(l.inverse_transform(pre)[0])
return pre
def train_single_thread(tid,p,le,key="answered"):
if (not type(tid) is int): raise TypeError("ID must be of type int")
if not type(p) is Pipeline: raise TypeError("Second Argument needs to be type Pipeline")
if not type(le) is LabelEncoder: raise TypeError("Second Argument needs to be type LabelEncoder")
mth=db_session.query(MailThread).filter(MailThread.firstmail==tid).first()
if mth is None: raise ValueError("Thread with firstmail %d not in Database" %tid)
# Predict the value
pre=p.predict([mth])
answ=pre[0]
#
# print mth.to_text()
# print mth.text()
print "Status is answered is estimated to be: " + str(le.inverse_transform(pre)[0])
print_answers(le)
ca=raw_input("Correct answer..")
try:
ca=int(ca)
except ValueError:
print "String Data"
if type(ca)==int:
if ca == answ:
print ("Yes I got it right")
else:
print("Oh no...!")
l=le.inverse_transform([ca])[0]
if type(l) is numpy.bool_:
l=bool(l)
if type(l) is numpy.string_:
l=str(l)
store_training_data(tid,l, key)
elif not ca.strip() == "":
store_training_data(tid, ca, key)
else:
print "couldn't handle %s" % ca
from flaskapp import app
#print "arg1:"+sys.argv[1]
if len(sys.argv)>1:
if sys.argv[1] == "fetch_threads":
@@ -89,6 +32,7 @@ if len(sys.argv)>1:
if sys.argv[1] == "run_server":
app.run(port=3000,debug=True)
if sys.argv[1] == "print_threads":
mth=db_session.query(MailThread).all()
for t in mth:
@@ -123,6 +67,14 @@ if len(sys.argv)>1:
pb, lb =get_pipe("pipe2b", "maintopic")
train_single_thread(int(sys.argv[2]),p,le,b"maintopic")
if sys.argv[1] == "train_thrd3":
# p, le=get_pipe("pipe2", "maintopic")
pb, lb =get_pipe("pipe2b", "lang")
train_single_thread(int(sys.argv[2]),pb,lb,b"lang")
if sys.argv[1] == "train_all2":
p, labelencoder=train_fit_pipe2()
pb, lb=train_fit_pipe2b()

3
run_server Executable file
View File

@@ -0,0 +1,3 @@
#!/bin/bash
. .env/bin/activate
python run.py run_server

View File

@@ -35,3 +35,22 @@ def flatten_threads(thrds, array=[], level=0):
for t in thrds:
array.append(flatten_threads(t,[],1))
return array
def store_threads(thrds):
for t in thrds:
if type(t[0]) is int:
th=db_session.query(MailThread).filter(MailThread.firstmail==t[0]).first()
# Wenn nicht gefunden neuen anlegen
if th == None:
th=MailThread()
th.firstmail=t[0]
elif not th.body == yaml.dump(t): # Ansonsten body vergleichen
th.body=yaml.dump(t) # body zb (27422,27506), (27450,)
th.islabeled=False
th.opened=True
else:
th.body=yaml.dump(t)
db_session.add(th)
db_session.commit()

View File

@@ -32,6 +32,7 @@ class MailThread(Base):
__jsonattrs__=None
answered=False
maintopic="information"
lang=""
def bdy(self):
return yaml.load(self.body)
@@ -50,7 +51,7 @@ class MailThread(Base):
def tstr(self):
fr=yaml.load(self.mails()[0].from_)
return "(" + str(self.answered)+ ", "+ str(self.maintopic) + ") " + str(self.firstmail)+": "+str(fr[0]["mail"])+"@"+str(fr[0]["host"]) + " | ".join(yaml.load(self.mails()[0].subject))
return "(" + str(self.answered)+ ", "+ str(self.maintopic)+ ", "+ str(self.lang) + ") " + str(self.firstmail)+": "+str(fr[0]["mail"])+"@"+str(fr[0]["host"]) + " | ".join(yaml.load(self.mails()[0].subject))
def mails(self):
a=[]
@@ -111,7 +112,7 @@ class MailThread(Base):
elif filter=="first":
a=mail_txt(m[0])
a=re.sub(r'\n\s*\n',r'\n',a)
a=re.sub(r'<!--.*-->',r'',a,flags=re.MULTILINE|re.DOTALL)
# a=re.sub(r'<!--.*-->',r'',a,flags=re.MULTILINE|re.DOTALL)
a=re.sub(r'\s*>+ .*\n',r'',a)