Files
service_mail/run.py
2017-08-28 15:06:54 +02:00

178 lines
6.3 KiB
Python

from __future__ import unicode_literals
#import imapclient
from config import Config
import sys
#from email.header import decode_header
#import email
import codecs
#import sys
#import bs4
import yaml
#sys.stdout = codecs.getwriter('utf8')(sys.stdout)
from storage.fetch_mail import fetch_mail
from storage.fetch_mail import fetch_threads, flatten_threads
from storage import Mail, MailThread, db_session
#import yaml
#import email
from classifier import get_training_threads, print_answers,get_pipe, test_pipe, train_single_thread # , pipe2, pipe2b
from classifier import predict_threads
maintopic_values=["studium", "information","ausleihen","jobausschreibung", "umfragen"]
def predict_thread(p,l,t):
pre=p.predict([t])
print "Status is answered is estimated to be: " + str(l.inverse_transform(pre)[0])
return pre
#print "arg1:"+sys.argv[1]
if len(sys.argv)>1:
if sys.argv[1] == "fetch_threads":
print flatten_threads(fetch_threads())
if sys.argv[1] == "predict_threads":
predict_threads()
if sys.argv[1]=="stats":
for topic in maintopic_values:
print topic
n_answ=db_session.query(MailThread).filter(MailThread.maintopic==topic).filter(MailThread.answered.op("IS")(True)).count()
n_nansw=db_session.query(MailThread).filter(MailThread.maintopic==topic).filter(MailThread.answered.op("IS NOT")(True)).count()
n_ges=db_session.query(MailThread).filter(MailThread.maintopic==topic).count()
print "%d answered and %d not answered of %d(%d) that are %d percent answerd" % (n_answ,n_nansw, n_ges,n_answ+n_nansw, float(n_answ)/float(n_ges)*100.0)
if sys.argv[1] == "run_server":
from flaskapp import app
app.run(port=3000,debug=True)
if sys.argv[1] == "train_thrd2":
p, le=get_pipe("pipe2", "maintopic",["db"])
pb, lb =get_pipe("pipe2b", "maintopic",["db"])
train_single_thread(int(sys.argv[2]),p,le,b"maintopic")
if sys.argv[1] == "train_thrd3":
# p, le=get_pipe("pipe2", "maintopic")
pb, lb =get_pipe("pipe2b", "lang")
train_single_thread(int(sys.argv[2]),pb,lb,b"lang")
if sys.argv[1] == "train_all2":
p, labelencoder=train_fit_pipe2()
pb, lb=train_fit_pipe2b()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail,"maintopic"):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
print t.text()
predict_thread(pb,lb,t)
train_single_thread(t.firstmail, p, labelencoder, b"maintopic")
if sys.argv[1] == "benchpipe3":
test_pipe(["pipe2d","pipe2e","pipe2e1","pipe2f","pipe2g"],"maintopic",["db","de"])
if sys.argv[1] == "benchpipe2":
test_pipe(["pipe2","pipe2b","pipe2c","pipe2d"],"maintopic",["db","de"])
# print "testing with db training data:"
# test_pipe(["pipe2b"],"maintopic",["db"])
# test_pipe(["pipe2b"],"maintopic",["db"])
# print "testing only with german data"
# test_pipe(["pipe2b"],"maintopic",["db","de"])
if sys.argv[1] == "testpipe2":
from classifier import ThreadSubjectExtractor, ThreadTextExtractor
pipe2,le=train_fit_pipe2()
if len(sys.argv)>2:
t=db_session.query(MailThread).filter(MailThread.firstmail==sys.argv[2]).first()
print t.to_text()
print le.inverse_transform(pipe2.predict([t]))
if sys.argv[1] == "train_thrd":
pipe1, labelencoder=train_fit_pipe()
train_single_thread(int(sys.argv[2]),pipe1,labelencoder)
if sys.argv[1] == "train_all":
pipe1, labelencoder=train_fit_pipe()
mth=db_session.query(MailThread).all()
print mth
for t in mth:
if not in_training(t.firstmail):
print "---------------------------------------------------"
print "---------------------------------------------------"
print t.firstmail
train_single_thread(t.firstmail,pipe1,labelencoder)
if sys.argv[1] == "print_thread":
mth=db_session.query(MailThread).filter(MailThread.firstmail==int(sys.argv[2])).first()
print mth.mail_dicts()
print mth.mail_flat_dict()
if sys.argv[1] == "store_threads":
thrds=flatten_threads(fetch_threads())
for t in thrds:
if type(t[0]) is int:
th=db_session.query(MailThread).filter(MailThread.firstmail==t[0]).first()
if th == None:
th=MailThread()
th.firstmail=t[0]
if not th.body == yaml.dump(t):
th.body=yaml.dump(t)
th.islabeled=False
th.opened=True
th.compile()
db_session.add(th)
db_session.commit()
print thrds
if sys.argv[1] == "print_raw_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
print yaml.load(mm.envelope)
if sys.argv[1] == "print_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
mm.compile_envelope()
print mm.subject
print "----------"
print mm.text
if sys.argv[1] == "mail_dict_test":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_envelope()
print mm.dict_envelope()
if sys.argv[1] == "load_mail":
mm=db_session.query(Mail).filter(Mail.id==int(sys.argv[2])).first()
mm.compile_text()
print mm.text
env=yaml.load(mm.envelope)
print env.subject
print env
if sys.argv[1] == "store_mail":
m=fetch_mail(int(sys.argv[2]))
mm=Mail()
mm.envelope=yaml.dump(m['ENVELOPE'])
mm.body=yaml.dump(m['RFC822'])
mm.id=m['id']
db_session.add(mm)
db_session.commit()
if sys.argv[1] == "initdb":
from storage import init_db
init_db()