Files
service_mail/classifier/classifier.py
2017-08-21 23:55:43 +02:00

351 lines
13 KiB
Python

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.naive_bayes import MultinomialNB
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
import numpy as np
import yaml
from storage import MailThread,db_session
from sklearn.metrics import accuracy_score, confusion_matrix
#with open("data.yml", 'r') as stream:
# try:
# train=yaml.load(stream)
# except yaml.YAMLError as exc:
# print(exc)
data_types= { "answered": bool, "maintopic": str, "lang": str}
def set_train_data(i,d,key=b"answered"):
global train
#------------------------------------
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
if not train.has_key(i) or train[i] is None:
train[i]={}
if not type(d) is data_types[key]:
raise TypeError("Data - %s - for key "% d +str(key)+" must be " +str(data_types[key])+ " but it is "+ str(type(d)))
#------------------------------------
train[i][key]=d
def store_training_data(i, d,key=b"answered"):
set_train_data(i,d,key)
with open("data.yml","w") as file:
file.write(yaml.dump(train,default_flow_style=True))
file.close()
# Lade Trainingsdaten fuer einen angegebenen key (Label/Eigenschaft)
def get_training_threads(key="answered", filters=[]):
if not data_types.has_key(key):
raise ValueError("Key "+str(key)+" unknown")
#------------------------------------
t_a=[]
d_a=[]
d_a2=[]
#------------------------------------
if "db" in filters:
q=db_session.query(MailThread).filter(MailThread.istrained.is_(True))
if "de" in filters:
q=q.filter(MailThread.lang=="de")
elif "en" in filters:
q=q.filter(MailThread.lang=="en")
tt=q.all()
for t in tt:
t_a.append(t)
if key =="answered":
d_a.append(t.is_answered())
elif key=="maintopic":
d_a.append(t.maintopic)
elif key=="lang":
d_a.append(t.lang)
else:
raise ValueError("Database Filter now required")
le=LabelEncoder()
d_a2=le.fit_transform(d_a)
return (t_a,d_a2,le)
# else:
# for i in train:
# if train[i].has_key(key): # In den Trainingsdaten muss der relevante Key sein
# t=db_session.query(MailThread).filter(MailThread.firstmail==i).first#()
# if not t is None: # Thread muss in der Datenbank sein
# t_a.append(t)
# d_a.append(train[i][key])
def in_training(i, key="answered"):
return train.has_key(i) and train[i].has_key(key)
def print_answers(l):
cc=l.classes_
c_id=l.transform(cc)
for i,c in enumerate(cc):
print str(i) + ": " + str(c)
return None
class ThreadDictExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.mail_flat_dict() for t in X]
class ThreadSubjectExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.subject() for t in X]
class ThreadTextExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.text() for t in X]
class ThreadFirstTextExtractor(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, X,y=None):
return [t.text("first") for t in X]
def get_pipe(p=b"pipe1",k=b"answered",filters=[]):
p=build_pipe(p)
tt= get_training_threads(k,filters)
#print tt
if len(tt[0]) > 0:
p.fit(tt[0],tt[1])
return p,tt[2]
else:
return None, None
def test_pipe(pp,k,f=[]):
tt= get_training_threads(k,f)
X_train,X_test,y_train,y_test=train_test_split(tt[0],tt[1],test_size=0.4)
if type(pp) is list:
for p in pp:
print "pipe: %s" % p
p=build_pipe(p)
p.fit(X_train,y_train)
ypred=p.predict(X_test)
print tt[2].classes_
print accuracy_score(y_test,ypred)
print confusion_matrix(y_test,ypred)
def build_pipe(p=b"pipe1"):
if p == "pipe1":
p=Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer()),
('clf', MultinomialNB())
])
elif p=="pipe2":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.7
} )),
('clf', MultinomialNB())
])
elif p=="pipe2b":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 0.7,
'envelope': 0.7
} )),
('mlc', MLPClassifier())
])
elif p=="pipe2d":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('firsttext', Pipeline([('tte',ThreadFirstTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1.3,
'text': 1,
'firsttext': 0.9,
'envelope': 0.2
} )),
('mlc', MLPClassifier())
])
elif p=="pipe2e":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('firsttext', Pipeline([('tte',ThreadFirstTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1.3,
'text': 1,
'firsttext': 0.9,
'envelope': 0.2
} )),
('mlc', MLPClassifier(hidden_layer_sizes=(100,100)))
])
elif p=="pipe2e1":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('firsttext', Pipeline([('tte',ThreadFirstTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1.3,
'text': 1,
'firsttext': 0.9,
'envelope': 0.2
} )),
('mlc', MLPClassifier(hidden_layer_sizes=(100,100,50)))
])
elif p=="pipe2f":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer(ngram_range=(1,1))),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer(ngram_range=(1,1))),
('tfidf', TfidfTransformer())
])),
('firsttext', Pipeline([('tte',ThreadFirstTextExtractor()),
('cv',CountVectorizer(ngram_range=(1,2))),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1.3,
'text': 1,
'firsttext': 0.9,
'envelope': 0.2
} )),
('mlc', MLPClassifier(hidden_layer_sizes=(100,100)))
])
elif p=="pipe2g":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer(ngram_range=(1,1))),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer(ngram_range=(1,1))),
('tfidf', TfidfTransformer())
])),
('firsttext', Pipeline([('tte',ThreadFirstTextExtractor()),
('cv',CountVectorizer(ngram_range=(1,2))),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1.3,
'text': 1,
'firsttext': 0.9,
'envelope': 0.2
} )),
('mlc', MLPClassifier(hidden_layer_sizes=(100,100,100)))
])
elif p=="pipe2c":
p = Pipeline([
('union', FeatureUnion(transformer_list=[
('subject', Pipeline([('tse', ThreadSubjectExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('text', Pipeline([('tte',ThreadTextExtractor()),
('cv',CountVectorizer()),
('tfidf', TfidfTransformer())
])),
('envelope', Pipeline([('tde', ThreadDictExtractor()),
('dv',DictVectorizer())
]))
], transformer_weights={
'subject': 1,
'text': 1,
'envelope': 0.4
} )),
('mlc', MLPClassifier())
])
else:
raise ValueError("The pipe %s is not a valid pipe")
return p