Files
service_mail/classifier/__init__.py
2017-08-28 15:06:54 +02:00

44 lines
1.7 KiB
Python

"""
This module holds the necessary functions to classify mail threads.
It predicts if a thread has been answered,the language and the topic.
"""
from classifier import print_answers
from classifier import get_pipe, test_pipe, get_training_threads
#from classifier import store_training_data
#in_training,
from training import train_single_thread
from storage import db_session, MailThread
def predict_threads():
"""
Predicts the language, topic and if a thread is anwered and writes that to the database. This function doesn't have a return value.
"""
# Loading pipes for the prediction of each thread
pipe1,le=get_pipe("pipe1",key=b"answered",filter=["db"])
pipe2,le2=get_pipe("pipe2g", b"maintopic",["db"])
pipe3,le3=get_pipe("pipe2b", b"lang",["db"])
# Loading untrained MailThreads:
q=db_session.query(MailThread).filter(MailThread.istrained.op("IS NOT")(True))
mail_threads=q.all()
if len(mail_threads) ==0:
raise StandardError("no untrained threads found in database")
#Run the prediction for each property
answered=le.inverse_transform(pipe1.predict(mail_threads))
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
lang=le3.inverse_transform(pipe3.predict(mail_threads))
# Commit the results to the database
for i, t in enumerate(mail_threads):
t.answered, t.opened, t.maintopic, t.lang = ( bool(answered[i]),
bool(answered[i]),
str(maintopic[i]),
str(lang[i])
)
db_session.add(t)
db_session.commit()