23 lines
939 B
Python
23 lines
939 B
Python
from classifier import get_training_threads, print_answers, in_training, store_training_data, get_pipe
|
|
from storage import db_session, MailThread
|
|
|
|
def predict_threads():
|
|
pipe1,le=get_pipe("pipe1",b"answered",["db"])
|
|
pipe2,le2=get_pipe("pipe2g", b"maintopic",["db"])
|
|
pipe3,le3=get_pipe("pipe2b", b"lang",["db"])
|
|
q=db_session.query(MailThread).filter(MailThread.istrained.op("IS NOT")(True))
|
|
mail_threads=q.all()
|
|
if len(mail_threads) ==0:
|
|
raise ValueError("no untrained threads found")
|
|
answered=le.inverse_transform(pipe1.predict(mail_threads))
|
|
maintopic=le2.inverse_transform(pipe2.predict(mail_threads))
|
|
lang=le3.inverse_transform(pipe3.predict(mail_threads))
|
|
|
|
for i, t in enumerate(mail_threads):
|
|
t.answered=bool(answered[i])
|
|
t.opened=bool(answered[i])
|
|
t.maintopic=str(maintopic[i])
|
|
t.lang=str(lang[i])
|
|
db_session.add(t)
|
|
db_session.commit()
|